Designing for Volatility

A look at volatility based decomposition and design



The One True Slide

What?
Why?
When?
How?



What...is volatility

® According to Vocabulary.com:

® Volatility is the trait of being excitable and unpredictable. Your volatility might
ultimately be the thing that makes you unsuitable as [an anger management counselor].
The noun volatility is the characteristic of changing often and unpredictably.

® TL;DR —Volatility means things change



What... is volatility based decomposition

® Two Primary Types

® Functional Decomposition

® ...isthe process of taking a complex process and breaking it down into its smaller,
simpler parts...based on the varying functions the process or system performs.

® Volatility based decomposition

® ...isthe process of decomposing a process based not on what the system does, but
rather on the volatility inherent in the process.



It’s not this serious...
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In truth, projects should almost always use BOTH — just not for the same purpose




Why...

® Characteristics of Good Software Design
® Maintainability

® Legibility

® Extensibility

® Reusability



Why...

® Characteristics of Good Software Design
® Maintainability
® Legibility
® Extensibility
® Reusability

In Short: Adaptability

“Intelligence is the ability to adapt to change” — Stephen Hawking



Why...

® Focus on what hurts most...
® True business logic / functional concerns tend to be surprisingly self-constraining

® Volatile interactions hurt more than volatile business rules
® Functional decomposition ignores interaction...

® Change tends to be a much more difficult beast to manage...
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(Lando didn’t account for volatility)



When

® Initial focus is in the architecture/design phase

® Thisis the easiest time to identify and organize volatile components

® Continued attention throughout the development lifecycle

® Sometimes as an individual component becomes more complex, additional volatility
can surface



How...

GOOD NEWS EVERYONE
%9)

Patterns already exist to help!



SOLID Principles

Single Responsibility — Responsibility = Reason to Change
Open/Closed — Deals with how to support change within a concept
® Extension versus modification

Liskov Substitution — Makes it possible for external contract implementations to
change

Interface-segregation — Provides for minimal change impact

Dependency Inversion — Allows all levels of the application to be insulated from
change



Take Away

® If nothing else, remember the "One True Slide”
® What...is likely to change

® Why...is it likely to change

® When...is it likely to change

® How...is it likely to change



