
Designing for Volatility
A look at volatility based decomposition and design



The One True Slide 

What?

Why?

When?

How?



What…is volatility
• According to Vocabulary.com:

• Volatility is the trait of being excitable and unpredictable. Your volatility might 
ultimately be the thing that makes you unsuitable as [an anger management counselor]. 
The noun volatility is the characteristic of changing often and unpredictably.

• TL;DR – Volatility means things change



What… is volatility based decomposition

• Two Primary Types

• Functional Decomposition

• …is the process of taking a complex process and breaking it down into its smaller, 
simpler parts…based on the varying functions the process or system performs.

• Volatility based decomposition

• …is the process of decomposing a process based not on what the system does, but 
rather on the volatility inherent in the process.



It’s not this serious…

In truth, projects should almost always use BOTH – just not for the same purpose



Why…

• Characteristics of Good Software Design

• Maintainability

• Legibility

• Extensibility

• Reusability



Why…

• Characteristics of Good Software Design

• Maintainability

• Legibility

• Extensibility

• Reusability

In Short: Adaptability

“Intelligence is the ability to adapt to change” – Stephen Hawking



Why…

• Focus on what hurts most…

• True business logic / functional concerns tend to be surprisingly self-constraining

• Volatile interactions hurt more than volatile business rules

• Functional decomposition ignores interaction…

• Change tends to be a much more difficult beast to manage…

(Lando didn’t account for volatility)



When

• Initial focus is in the architecture/design phase

• This is the easiest time to identify and organize volatile components

• Continued attention throughout the development lifecycle

• Sometimes as an individual component becomes more complex, additional volatility 
can surface



How…

Patterns already exist to help!



SOLID Principles

• Single Responsibility – Responsibility = Reason to Change

• Open/Closed – Deals with how to support change within a concept

• Extension versus modification

• Liskov Substitution – Makes it possible for external contract implementations to 
change

• Interface-segregation – Provides for minimal change impact

• Dependency Inversion – Allows all levels of the application to be insulated from 
change



Take Away

• If nothing else, remember the “One True Slide”

• What…is likely to change

• Why…is it likely to change

• When…is it likely to change

• How…is it likely to change


