Designing for Volatility

A look at volatility based decomposition and design



The One True Slide

What?
Why?
When?
How?



What...is volatility

® According to Vocabulary.com:

® Volatility is the trait of being excitable and unpredictable. Your volatility might
ultimately be the thing that makes you unsuitable as [an anger management counselor].
The noun volatility is the characteristic of changing often and unpredictably.

® TL;DR —Volatility means things change



What... is volatility based decomposition

® Two Primary Types

® Functional Decomposition

® ...isthe process of taking a complex process and breaking it down into its smaller,
simpler parts...based on the varying functions the process or system performs.

® Volatility based decomposition

® ...isthe process of decomposing a process based not on what the system does, but
rather on the volatility inherent in the process.



It’s not this serious...

HIGHLANDER

THUNDERDOME

two men enter, one ma

In truth, projects should almost always use BOTH — just not for the same purpose




Why...

® Characteristics of Good Software Design
® Maintainability

® Legibility

® Extensibility

® Reusability



Why...

® Characteristics of Good Software Design
® Maintainability
® Legibility
® Extensibility
® Reusability

In Short: Adaptability

“Intelligence is the ability to adapt to change” — Stephen Hawking



Why...

® Focus on what hurts most...
® True business logic / functional concerns tend to be surprisingly self-constraining

® Volatile interactions hurt more than volatile business rules
® Functional decomposition ignores interaction...

® Change tends to be a much more difficult beast to manage...

ol

Y
P THIS DEAL IS ﬂETT_I!IG WORSEALL
THETIME v

e memecrunchicom

(Lando didn’t account for volatility)



When

® Initial focus is in the architecture/design phase

® Thisis the easiest time to identify and organize volatile components

® Continued attention throughout the development lifecycle

® Sometimes as an individual component becomes more complex, additional volatility
can surface



How...

GOOD NEWS EVERYONE
%9)

Patterns already exist to help!



SOLID Principles

Single Responsibility — Responsibility = Reason to Change
Open/Closed — Deals with how to support change within a concept
® Extension versus modification

Liskov Substitution — Makes it possible for external contract implementations to
change

Interface-segregation — Provides for minimal change impact

Dependency Inversion — Allows all levels of the application to be insulated from
change



Take Away

® If nothing else, remember the "One True Slide”
® What...is likely to change

® Why...is it likely to change

® When...is it likely to change

® How...is it likely to change



