Using Redux with Angular to Untangle Angular Application State



Ready for some fun...ctional state management?

Here's What We'll Cover

State Management

What is it? Why is it so hard? Don't patterns like MVC
separate our concerns enough and resolve this issue?

ng-rx/store? Redux? What the Flux?

What is ng-rx/store, and how does it relate to Redux, Flux,
and all the other stuff it gets confused for?

Stores, Actions, and Reducers

The basic elements of @ng-rx/store. What they do, what
they look like, and how they fit into the big picture

A Little More: Side Effects and Routing

Going beyond data management and view binding

Tooling

Tools? We don't need no stinkin'...actually, yea, tools are
great.

Q&A

I'm here to help, so don't be afraid to ask - even before we
get here!



What Is State Management?

Obligatory Boring Wikipedia Quote

State management
refers to the
NEREREIMENXIRUE
state of [...] user
interface controls [...] in
a graphical user
interface.

The panda is here because it's more interesting!



In theory, MVC is great!

Access State

for Processing

Controller

—Update State—p»

Model

State Changes
 (via Bindings)

User Action

View

(Mouse click, text entry, etc)




Adding components

It Gets Painful, Fast

Access State
for Processing

Controller Update State—p»| S(‘tl?;es(i?nh; r?g:)s

User Action .
Invoke Child Action (Mouse click, text entry, etc)
(Almost always to
update state)

Update via Reference

Emit Event
(So parent can update) Access State
. for Processing

State Changes

Child Controller Update State Child Model (via Bindings)

Child View

User Action
(Mouse click, text entry, etc)

that need

to share state is like feeding
this guy after midnight




The basic pattern of using stores
and actions to manage state

Roughly, a flux implementation built
as are-usable, standardized JS
state management framework

Inspired by Redux, but built
specifically for Angular utilizing
RxJS to enable state flow via
Observables



What is Flux?

@ Pattern / Architectural Approach

@ Designed to de-couple state management
from view management

@ Underlying principle is that components
(views/controllers) shouldn't have to fight to
keep state updated and views reactive

Dispatcher

© “We originally set out to deal correctly with
derived data: for example, [...] show an unread
count for message threads while another
view showed a list of threads, with the unread
ones highlighted. [...] marking a single thread
as read would update the thread model, and
then also need to update the unread count
model. These dependencies and cascading
updates [... lead] to a tangled weave of data
flow and unpredictable results.”

*https://facebook.github.io/flux/docs/in-depth-overview.html#content



Redux and ng-rx

D

Redux

e |s a codified interpretation of Flux

e Originally designed with react in mind, but
not bound to a specific view/rendering
library

e Disregards the single dispatcher / multiple
store concept for a composable store model
in which the store IS the dispatcher

ng-rx

Builds off the redux approach
Does not DEPEND on redux

Utilizes RxJS to support notification of
changes

Provides bindings and implementations that
enable seamless integration with Angular



Principle Entities for Redux/ng-rx

Actions

e Define what can be done to
state

e Define the payload needed to
apply the action

e Act as messages between
components in your
application and the store

e Typically very light weight
classes to allow for Type
Safe messaging

Reducers
e Pure functions

e Take an existing state and
apply actions to it

e Act as maps, defining the
shape of the state managed
and what changes occur for
a given action

¢ Are the only components
capable of causing
“changes” to state

e Always return a NEW state
object, making store data
immutable and forcing
pattern adherence

Store

¢ Brings together reducers

¢ Dispatches messages
(actions) sent by your
application to handlers

(reducers) registered with
the store

e Manages notifying
consumers of new data

Side Effects

e Act as a logic/service layer
e Receive all actions

¢ Delegate any resulting state
changes to reducers via new
actions



Schematics

e Scaffolding Library

e Allows easy creation of various ng-rx
components

Tools!

Store Dev Tools
e Allows review of the action/reducer history
e Allows time travel

e Shows chart of reducers and current state
values



Helpful Links / References

Flux
e https://github.com/facebook/flux/tree/master/examples/flux-concepts
e https://facebook.github.io/flux/docs/in-depth-overview.html#content

e Flux is the pattern on which all of this is based. | encourage anybody using ng-rx Store to dig into the
patterns it is based on, and these links represent the best places to start.

Redux https://redux.js.org/introduction
e https://redux.js.org/introduction
e https://github.com/angular-redux/example-app

® Redux's conceptual overviews/tutorials are a bit better than those for ng-rx, and can be used as a basis
for understanding ng-rx

Ng-rx
e https://github.com/ngrx/platform (schematics and dev tools links can be found in the readme)

e https://goo.gl/T9XSot - StackBlitz instance for the ng-rx sample app

This Presentation
https://www.beautiful.ai/deck/-LH34-y5XrSsrVIj5_i2/ngrx-Store



Travis Stokes

Owner / Oceanview Consulting
Senior Consultant / SingleStone

@ travis@ovitconsulting.com

Zamy
S

http://ovitconsulting.com
W @sysgineer

M https://www.linkedin.com/in/travis-stokes/




