Solid Principles

A (partial) blueprint for dealing with change

Agenda

® Software Facts of Life

® Good Software Design

® SOLID Principles

® Single Responsibility Principle
® Open/Closed Principle

® Liskov Substitution Principle

® Interface Segregation Principle

Dependency Inversion Principle

80

20

Software Facts of Life

® Code has ZERO intrinsic value

® Developers are engineers, not artists

80:20

Software Facts of Life

® Code has ZERO intrinsic value

® Developers are engineers, not artists

® High maintenance costs — 5o — 80% of total cost of ownership

80:20

Software Facts of Life

® Code has ZERO intrinsic value

® Developers are engineers, not artists
® High maintenance costs — 5o — 80% of total cost of ownership

® Itis harder to modify code than to write it

80:20

Characteristics of Good Software Design

® Maintainability — minimal effort spent finding and fixing issues; easy to
update

80:20

Characteristics of Good Software Design

® Maintainability — minimal effort spent finding and fixing issues; easy to
update

® Legibility — easy for new (or forgetful) developers to jump in

80:20

Characteristics of Good Software Design

® Maintainability — minimal effort spent finding and fixing issues; easy to
update

® Legibility — easy for new (or forgetful) developers to jump in

® Extensibility — easy to add new, and expand existing, features

80:20

Characteristics of Good Software Design

Maintainability — minimal effort spent finding and fixing issues; easy to
update

Legibility — easy for new (or forgetful) developers to jump in
Extensibility — easy to add new, and expand existing, features

Reusability — easy to reuse low level components

80:20

Characteristics of Good Software Design

® Maintainability — minimal effort spent finding and fixing issues; easy to update
® Legibility — easy for new (or forgetful) developers to jump in
® Extensibility — easy to add new, and expand existing, features

® Reusability — easy to reuse low level components
In Short: Adaptability

“Intelligence is the ability to adapt to change” — Stephen Hawking

80

20

Single Responsibility (SRP)

® Each component should have one and only one reason to change

® Helps limit the scope of changes

80:20

Open/Closed (OCP)

® Components should be open for extension and closed for modification
® Helps provide control and assurance of what is changing

® Heavy reliance on compliance with the SRP

80:20

Liskov Substitution (LSP)

® Derived classes must be substitutable for their base classes (or any of their
siblings)

® Also applies to concrete implementations of abstractions

® Prevents dependents from having to know about all implementations of an
abstraction

® Makes it possible for external contract implementations to change

80:20

Interface Segregation (ISP)

® Interfaces should be minimalistic and client specific

® Provides for minimal change impact

80:20

Goldilocks Conundrum

® Cohesion versus Coupling

® How do we reduce coupling while maintaining cohesion?

80:20

Too Few

High Coupling
Low Cohesion
| always know who to go to for questions

Every change affects this single person, and
this person has to know about and remember
every single change

Too Many

Low Coupling
High Cohesion

Each person is responsible for very little, so
training them and keeping them updated is
extremely easy

When | have a question, it is very difficult to
figure out who | should ask

Just Right

Moderate Coupling
Moderate Cohesion

When | have a question, | probably know who
to ask.

Even if | don't know who to ask, | can very
quickly check with each person involved.

Dependency Inversion

® Modules should depend upon abstract concepts, not concrete
implementations

® Allows all levels of the application to be insulated from change

80:20

Resources

® http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

® http://galorath.com/wp-
content/uploads/2014/08/software total ownership costs-
development is only job one.pdf

80:20

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://galorath.com/wp-content/uploads/2014/08/software_total_ownership_costs-development_is_only_job_one.pdf

